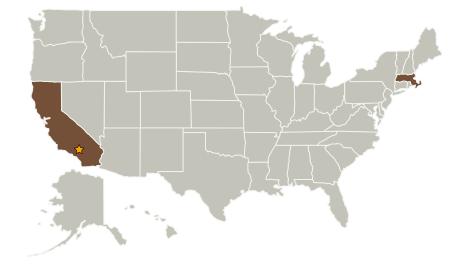
Online Real-Time Tribology Failure Detection System, Phase II



Completed Technology Project (2007 - 2009)

Project Introduction

Under NASA Phase I funding, we have developed a system for the ball bearing fault detection and identification. Our system can effectively identify multiple fault modes related to the evolution of friction within the contact in the coated ball bearings. To detect bearing faulty modes, we have developed a new bispectrum and entropy analysis method to capture the faulty transient signals embedded in the measurements. To classify the fault modes, we further developed a set of stochastic models using hidden Markov model (HMM) and Gaussian mixtures. Test results using lab experiment data have shown that our system can identify coated ball bearing fault modes in near real-time. In Phase II, we will further develop and test our system developed in Phase I for spacecraft mechanical parts health monitoring and mitigating actions. A thorough understanding of the failure mechanisms of the moving parts will emerge by the end of the Phase II effort, as well as the methodology to prevent catastrophic failure while in orbit. Algorithms developed in Phase I/II will be implemented in C/C++. Effort will be focused on the accuracy, autonomous, speed and efficiency of the system. The Boeing Company has teamed with us for Phase II effort.

Primary U.S. Work Locations and Key Partners

Online Real-Time Tribology Failure Detection System, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility	1	
Project Transitions	2	
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Armstrong Flight Research Center (AFRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Online Real-Time Tribology Failure Detection System, Phase II

Completed Technology Project (2007 - 2009)

Organizations Performing Work	Role	Туре	Location
Armstrong Flight Research Center(AFRC)	Lead Organization	NASA Center	Edwards, California
Migma Systems, Inc.	Supporting Organization	Industry	Walpole, Massachusetts

Primary U.S. Work Locations	
California	Massachusetts

Project Transitions

November 2007: Project Start

November 2009: Closed out

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

- TX11 Software, Modeling, Simulation, and Information Processing
 - □ TX11.1 Software
 Development,
 Engineering, and Integrity
 □ TX11.1.4 Operational
 Assurance

